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Effect of spin-orbit coupling on the effective-spin correlation in YbMgGaO4
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Motivated by the recent experiments on the triangular lattice spin-liquid candidate YbMgGaO4, we explore
the effect of spin-orbit coupling on the effective-spin correlation of the Yb local moments. We point out
that the anisotropic interaction between the effective spins on the nearest-neighbor bonds is sufficient to
reproduce the spin-wave dispersion of the fully polarized state in the presence of strong magnetic field normal
to the triangular plane. We further evaluate the effective-spin correlation at zero magnetic field within the
mean-field spherical approximation. We explicitly demonstrate that the nearest-neighbor anisotropic effective-spin
interaction, originating from the strong spin-orbit coupling, enhances the effective-spin correlation at the M points
in the Brillouin zone. We identify these results as strong evidence for the anisotropic interaction and strong
spin-orbit coupling in YbMgGaO4.
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I. INTRODUCTION

The rare-earth triangular lattice antiferromagnet
YbMgGaO4 was recently proposed to be a candidate
for a quantum spin liquid (QSL) [1–6] and has received
considerable attention [7–16]. In YbMgGaO4, the Yb3+ ions
form a perfect two-dimensional triangular lattice [1]. For the
Yb3+ ions, the strong spin-orbit coupling (SOC) entangles
the orbital angular momentum, L (L = 3), with total spin s
(s = 1/2) leading to a total moment J (J = 7/2) [2,3]. Like
the case in the spin-ice material Yb2Ti2O7 [17], the crystal
electric field in YbMgGaO4 further splits the eight-fold
degeneracy of the Yb3+ total moment into four Kramers’
doublets. The ground-state Kramers’ doublet is separated
from the excited doublets by a crystal-field energy gap. At
a temperature much lower than the crystal-field gap, the
magnetic properties of YbMgGaO4 are fully described by
the ground-state Kramers’ doublets [3]. The ground-state
Kramers’ doublet is modeled by an effective-spin- 1

2 local
moment S. Therefore, YbMgGaO4 is regarded as a QSL with
effective-spin- 1

2 local moments on a triangular lattice [2–5].
The existing experiments on YbMgGaO4 have involved

thermodynamic, neutron scattering, and μSR measurements
[2,4–6]. The system was found to remain disordered down to
0.05 K in the recent μSR measurement [6]. The thermody-
namic measurement finds a constant magnetic susceptibility
in the zero-temperature limit. In the low-temperature regime,
the heat capacity [1,2,5] behaves as Cv ≈ constant × T 0.7. The
inelastic neutron-scattering measurements from two research
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groups have found the presence of broad magnetic excitation
continuum [4,5]. In particular, the inelastic neutron-scattering
results from Shen et al. clearly indicate the upper excitation
edge and the dispersive continuum of magnetic excitations [4].
Both neutron-scattering results found a weak spectral peak at
the M points in the Brillouin zone [4,5]. Based on the existing
experiments, we have proposed that the spinon Fermi surface
U(1) QSL gives a reasonable description of the experimental
results [4].

Previously, two organic triangular antiferromagnets, κ-
(ET)2Cu2(CN)3 and EtMe3Sb[Pd(dmit)2]2, were proposed to
be QSLs [18–21]. These two materials are in the weak Mott
regime, where the charge fluctuation is strong. It was then
suggested that the four-spin ring exchange interaction due to
the strong charge fluctuation may destabilize the magnetic
order and favor a QSL ground state [22,23]. Unlike the organic
counterparts, YbMgGaO4 is in the strong Mott regime [2,3].
The 4f electrons of the Yb3+ ion is very localized spatially.
As a result, the physical mechanism for the QSL ground state
in this new material is deemed to be quite different. The new
ingredients of the new material are believed to be the strong
SOC and the spin-orbit-entangled nature of the Yb3+ local
moment. It was pointed out that the spin-orbit entanglement
leads to highly anisotropic interactions between the Yb local
moments [3,24–26]. The anisotropic effective-spin interaction
is shown to enhance the quantum fluctuation and suppress the
magnetic order in a large parameter regime where the QSL may
be located [3]. On the fundamental side, it was recently argued
that, as long as the time-reversal symmetry is preserved, the
ground state of a spin-orbit-coupled Mott insulator with an odd
number of electrons per cell must be exotic [27]. This theoreti-
cal argument implies that the spin-orbit-coupled Mott insulator
can in principle be a candidate for spin liquids. YbMgGaO4
falls into this class and is actually the first such material.
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More recently, Ref. [5] introduced the XXZ exchange in-
teractions on both nearest-neighbor and next-nearest-neighbor
sites to account for the spin-wave dispersion in the strong mag-
netic field and the weak peak at the M points in the effective-
spin correlations. The authors further suggested the further
neighbor competing exchange interactions as the possible
mechanism for the QSL in YbMgGaO4. In this paper, however,
we focus on the anisotropic effective-spin interactions on the
nearest-neighbor sites. After justifying the underlying micro-
scopics that support the nearest-neighbor anisotropic model,
we demonstrate that the nearest-neighbor model is sufficient
to reproduce the spin-wave dispersion of the polarized state in
a strong magnetic field. With the nearest-neighbor anisotropic
model, we further show that the effective-spin correlation
also develops a peak at the M points. Therefore, we think
the nearest-neighbor anisotropic model captures the essential
physics for YbMgGaO4.

The remaining part of the paper is outlined as follows: In
Sec. II, we describe some of the details about the microscopics
of the interactions between the Yb local moments. In Sec. III,
we compare the spin-wave dispersion of the nearest-neighbor
anisotropic interactions in a strong field with the existing
experimental data. In Sec. IV, we evaluate the effective-spin
correlation from the effective-spin models with and without the
anisotropic interaction. Finally in Sec. V, we conclude with a
discussion.

II. ANISOTROPIC INTERACTION FOR EFFECTIVE SPINS

Compared to the organic spin-liquid candidates [18–21],
YbMgGaO4 is in the strong Mott regime, and the charge
fluctuation is rather weak. Therefore, the four-spin ring ex-
change, which is a higher-order perturbative process than the
nearest-neighbor pairwise interaction, is strongly suppressed.
In previous work [2,3], we proposed the following generic
pairwise effective-spin interaction for the nearest-neighbor Yb
moments in YbMgGaO4:

H =
∑
〈rr′〉

JzzS
z
rS

z
r′ + J±(S+

r S−
r′ + S−

r S+
r′ )

+ J±±(γrr′S
+
r S+

r′ + γ ∗
rr′S

−
r S−

r′ )

− iJz±
2

[(γ ∗
rr′S

+
r − γrr′S

−
r )Sz

r′

+ Sz
r (γ ∗

rr′S
+
r′ − γrr′S

−
r′ )], (1)

where S±
r = Sx

r ± iS
y
r , and γrr′ = γr′r = 1, ei2π/3, e−i2π/3 are

the phase factors for the bond rr′ along the a1, a2, a3 directions
(see Fig. 1). The J±± and Jz± terms of Eq. (1) are anisotropic
interactions arising naturally from the strong SOC. Due to the
SOC, the effective spins inherit the symmetry operation of
the space group, so there are bond-dependent J±± and Jz±
interactions.

Our generic model in Eq. (1) contains the contribution from
all microscopic processes that include the direct 4f -electron
exchange, the indirect exchange through the intermediate
oxygen ions, and the dipole-dipole interaction. Any further-
neighbor interaction is neglected in our generic model. Like
the ring exchange, the further neighbor superexchange may
involve higher-order perturbative processes via multiple steps

FIG. 1. (a) Crystal structure of YbMgGaO4. Mg and Ga ions form
the nonmagnetic layer. (b) Yb triangular layer.

of electron tunnelings than the nearest-neighbor interactions.
Even though the further neighbor superexchange interaction
can be mediated by the direct electron hoppings between these
sites, the contribution should be very small due to the very lo-
calized nature of the 4f electron wave function. The remaining
contribution is the further neighbor dipole-dipole interaction.
For the next-nearest neighbors, the dipole-dipole interaction is
estimated to be ∼0.01–0.02 K and is thus one or two orders
of magnitude smaller than the nearest-neighbor interactions.
Therefore, we neglect further neighbor interactions and only
keep the nearest-neighbor interactions in Eq. (1).

The large chemical difference prohibits the Ga or Mg
contamination in the Yb layers. The Yb layers are kept clean,
and there is little disorder in the exchange interaction. Although
there exists Ga-Mg mixing in the nonmagnetic layers, the
exchange path that they involve would be Yb-O-Ga-O-Yb or
Yb-O-Mg-O-Yb (see Fig. 1). This exchange path is a higher-
order perturbative process than the Yb-O-Yb one and thus can
be neglected. If this mechanism is primary, we do not expect
the Ga-Mg mixing in the nonmagnetic layers to cause much
exchange disorder within the Yb layers. If the crystal electric
field of the Yb ion is strongly influenced by the Ga-Mg mixing
in the nonmagnetic layers [13], then the exchange may be more
affected. The recent polarized-neutron-scattering experiment
[15], however, suggests that despite the presence of Ga-Mg
mixing, the exchange disorder is not quite significant. More-
over, the Ga-Mg disorder in YbMgGaO4 is fundamentally
different from the Cu-Zn disorder in herbertsmithite [28–31].
In the latter case, the Cu disorder carries a magnetic moment
and directly couples to the spin in the Cu layers.
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The XXZ limit of our generic model has already been
studied in some of the early works [32,33]. It was shown
that the magnetic-ordered ground state was obtained for all
parameter regions in the XXZ limit. To obtain a disordered
ground state for the generic model, it is necessary to have the
J±± and Jz± interactions. In Ref. [3], we have shown that the
120° magnetic order in the XXZ limit is actually destabilized
by the enhanced quantum fluctuation when the anisotropic J±±
and Jz± interactions are introduced.

III. SPIN-WAVE DISPERSION IN STRONG
MAGNETIC FIELD

The nearest-neighbor interaction between the Yb local
moments are of the order of several kelvin [2]; as a result,
a moderate magnetic field in the laboratory is sufficient for
polarizing the local moment [3]. Under the linear spin-wave
approximation, the spin-wave dispersion in the presence of the
strong external magnetic field is given as [3]

ωz(k) =
⎧⎨
⎩

[
gzμBBz − 3Jzz + 2J±

3∑
i=1

cos (k · ai)

]2

− 4J 2
±±

∣∣ cos (k · a1) + e−i 2π
3 cos (k · a2)

+ ei 2π
3 cos (k · a3)

∣∣2

}1/2

, (2)

where gz and Bz are the Landé factor and the magnetic field
along the z direction, respectively. Note that the dispersion
in Eq. (2) is independent of Jz± for the magnetic field along
the z direction; this is an artifact of the linear spin-wave
approximation.

In the recent experiment in Ref. [5], a magnetic field of
7.8 T normal to the Yb plane at 0.06 K, a gapped magnon band
structure is observed. In Fig. 2, we compare our theoretical
result with a tentative choice of exchange couplings in Eq. (2)

with the experimental results from Ref. [5]. Since the error bar
is not known from Ref. [5], judging from the extension of the
bright region in Fig. 2(a), we would think that the agreement
between the theoretical result and the experimental result is
reasonable. Here, we have to mention that the dispersion
plotted in Fig. 2 is not quite sensitive to the choice of J±±.
Therefore, we expect it is better to combine the spin-wave
dispersion for several field orientations and to extract the
exchange couplings more accurately. For an arbitrary external
field in the xz plane, the Hamiltonian is given by

Hxz = H −
∑

r

μB

[
gxBxS

x
r + gzBzS

z
r

]
. (3)

Since gx �= gz, the uniform magnetization, m ≡ 〈Sr〉, is gener-
ally not parallel to the external magnetic field. ForBx ≡ B sin θ

and Bz ≡ B cos θ , the magnetization is given by

m = m(x̂ sin θ ′ + ẑ cos θ ′), (4)

where tan θ ′ = (gx/gz) tan θ . At a sufficiently large magnetic
field, all the moments are polarized along the direction defined
by θ ′. In the linear spin-wave theory for this polarized state,
we choose the magnetization to be the quantization axis for the
Holstein–Primakoff transformation,

Sr · m
|m| ≡ 1

2
− a†

rar, (5)

Sr · ŷ ≡ 1

2
(ar + a†

r), (6)

Sr ·
(

m
|m| × ŷ

)
≡ 1

2i
(ar − a†

r), (7)

where a
†
r (ar) is the creation (annihilation) operator for the

Holstein–Primakoff boson. In the linear spin-wave approxi-
mation, we plug the Holstein–Primakoff transformation into
Hxz and keep the quadratic part of the Holstein–Primakoff
bosons. The spin-wave dispersion is obtained by solving the
linear spin-wave Hamiltonian and is given by

ωxz(k) =
{{

gxμBBx sin θ ′ + gzμBBz cos θ ′ − 6J± sin2 θ ′ − 3Jzz cos2 θ ′ + cos (k · a1)

×
[
J±
2

(3 + cos 2θ ′) − J±± sin2 θ ′ + Jzz

2
sin2 θ ′

]

+ cos (k · a2)

[
J±
2

(3 + cos 2θ ′) + J±±
2

sin2 θ ′ + Jzz

2
sin2 θ ′ +

√
3

4
Jz± sin 2θ ′

]

+ cos (k · a3)

[
J±
2

(3 + cos 2θ ′) + J±±
2

sin2 θ ′ + Jzz

2
sin2 θ ′ −

√
3

4
Jz± sin 2θ ′

]}2

−
∣∣∣∣ cos (k · a1)

[
J± sin2 θ ′ − J±±(1 + cos2 θ ′) − iJz± sin θ ′ − Jzz

2
sin2 θ ′

]

+ cos (k · a2)

[
J± sin2 θ ′ + J±±

4
(3 + cos 2θ ′ − 4i

√
3 cos θ ′)

− Jzz

2
sin2 θ ′ + Jz±

4
(2i sin θ ′ −

√
3 sin 2θ ′)

]
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FIG. 2. (a) Experimental spin-wave dispersion in the presence of an external field along the z direction with a field strength of 7.8 T at
0.06 K (adapted from the arXiv version of Ref. [5]). According to Ref. [5], the white circles indicate the location of maximum intensity. The
error bar, however, is not indicated in the plot. The red lines show a fit to the spin-wave dispersion relation that is obtained after including both
nearest-neighbor and next-nearest-neighbor XXZ exchange interactions [5]. (b) Theoretical spin-wave dispersion according to nearest-neighbor
anisotropic exchange model (1), where we set J±/Jzz = 0.66, J±±/Jzz = 0.34, and h/Jzz = 10.5. The analytical expression of the dispersion
is given in Eq. (2). The inset of panel (b) is the Brillouin zone.

+ cos (k · a3)

[
J± sin2 θ ′ + J±±

4
(3 + cos 2θ ′ + 4i

√
3 cos θ ′)

− Jzz

2
sin2 θ ′ + Jz±

4
(2i sin θ ′ +

√
3 sin 2θ ′)

]∣∣∣∣
2
}1/2

. (8)

Likewise, for the field within the xy plane, the Hamiltonian is given by

Hxy = H −
∑

r

μB

[
gxBxS

x
r + gyByS

y
r

]
. (9)

Now because of the threefold on-site symmetry, gx = gy . The magnetization is parallel to the external magnetic field. For
Bx ≡ B cos φ and By ≡ B sin φ, the magnetization is m = m(x̂ cos φ + ŷ sin φ), and the corresponding spin-wave dispersion in
the strong-field limit is given by

ωxy(k) =
{{

gxμBBx cos φ + gyμBBy sin φ − 6J± + cos (k · a1)

(
J± + Jzz

2
− J±± cos 2φ

)

+ cos (k · a2)

[
J± + Jzz

2
+ J±± cos

(
2φ − π

3

)]

+ cos (k · a3)

[
J± + Jzz

2
+ J±± cos

(
2φ + π

3

)]}2

−
∣∣∣∣cos (k · a1)

(
J± − Jzz

2
− J±± cos 2φ + iJz± cos φ

)

+ cos (k · a2)

[
J± − Jzz

2
+ J±± cos

(
2φ + π

3

)
− iJz± cos

(
φ − π

3

)]

+ cos (k · a3)

[
J± − Jzz

2
+ J±± cos

(
2φ − π

3

)
− iJz± cos

(
φ + π

3

)]∣∣∣∣
2
}1/2

. (10)
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IV. EFFECTIVE-SPIN CORRELATION

In both Refs. [4] and [5], a weak spectral peak at the
M points is found in the inelastic-neutron-scattering data.
This result indicates that the interaction between the Yb local
moments enhances the correlation of the effective spins at the
M points. Actually, in Ref. [3], we have already shown that, the
anisotropic J±± and Jz± interactions, if they are significant,
would favor a stripe magnetic order with an ordering wave
vector at the M points [34]. This theoretical result immediately
means that the anisotropic J±± and Jz± interactions would
enhance the effective-spin correlation at the M points. In the
following, we demonstrate explicitly that the generic model in
Eq. (1) with the anisotropic nearest-neighbor interactions does
enhance the effective-spin correlation at the M points. We start
from the mean-field partition function of the system,

Z =
∫

D[Sr]
∏

r

δ
(
S2

r − S2
)
e−βH

=
∫

D[Sr]D[λr] e−βH+∑
r λr[S2

r−S2]

≡
∫

D[Sr]D[λr] e−Seff[β,λr], (11)

where H is given in Eq. (1), Seff is the effective action that
describes the effective-spin interaction, and λr is the local
Lagrange multiplier that imposes the local constraint with
|Sr|2 = S2. Although this mean-field approximation does not
give the quantum ground state, it does provide a qualitative
understanding of the relationship between the effective-spin
correlation and the microscopic spin interactions.

To evaluate the effective-spin correlation, we adopt here a
spherical approximation [35] by replacing the local constraint
with a global one such that

∑
r |Sr|2 = NsiteS

2, where Nsite is
the total number of lattice sites. This approximation is equiv-
alent to choosing a uniform Lagrange multiplier with λr ≡ λ.
It has been shown that the spin correlations determined from
classical Monte Carlo simulation are described quantitatively
within this scheme [35]. The validity of this method is justified
by the fact that the thermal fluctuation at finite temperatures
softens the local spin constraint. This method was quoted as
the self-consistent Gaussian approximation in Ref. [15].

In the momentum space, we define

Sμ
r ≡ 1√

Nsite

∑
k∈BZ

S
μ

k eik·r, (12)

and the effective action is given by

Seff[β,λ] =
∑
k∈BZ

β[Jμν(k) + �(β)δμν]

× S
μ

k Sν
−k − βNsite�(β)S2, (13)

where we have placed λ ≡ −β�(β) in a saddle-point ap-
proximation, μ, ν = x, y, z, and Jμν(k) is a 3 × 3 exchange
matrix that is obtained by Fourier transforming the exchange
couplings. Note the XXZ part of the spin interactions only
appears in the diagonal part of Jμν(k) while the anisotropic
J±± and Jz± interactions are also present in the off-diagonal

(a) (b)

(c) (d)

FIG. 3. Contour plot of effective-spin correlation 〈S+
k S−

−k〉 in
momentum space. The correlation function is computed from the
nearest-neighbor model (1), with parameters in units of Jzz indicated.
Without the anisotropic exchanges, the spectral weight peaks around
K. The anisotropic J±± and Jz± interactions can switch the peak
to M.

part. Thus, the effective-spin correlation is given as

〈Sμ

k Sν
−k〉 = 1

β
[J (k) + �(β)13×3]−1

μν , (14)

where 13×3 is a 3 × 3 identity matrix.
The saddle-point equation is obtained by integrating out the

effective spins in the partition function and is given by∑
k∈BZ

∑
μ

1

β
[J (k) + �(β)13×3]−1

μμ = NsiteS
2, (15)

from which we determine �(β) and the effective-spin correla-
tion in Eq. (14).

The results of the effective-spin correlations are presented
in Fig. 3. In the absence of the J±± and Jz± interactions, the
correlation function is peaked at the K points. This result is
understood since the XXZ model that favors the 120° state
would simply enhance the effective-spin correlation at the K
points that correspond to the ordering wave vectors of the 120°
state. After we include the J±± and Jz± interactions, the peak
of the correlation function is switched to the M points [see
Fig. 3(d)]. In the appendix, we provide the spin correlations for
more parameter choices of the anisotropic exchange couplings
J±± and Jz±. This suggests that it is sufficient to have the J±±
and Jz± interactions in the nearest-neighbor model to account
for the peak at the M points in the neutron-scattering results.

V. DISCUSSION

Instead of invoking further-neighbor interactions in Ref. [5],
we focus on the anisotropic spin interaction on the nearest-
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(a)

(f) (g) (h) (i) (j)

(b) (c) (d) (e)

FIG. 4. Contour plot of effective-spin correlation 〈S+
k S−

−k〉 in momentum space. In the plot, we set Jzz as the energy unit, i.e., Jzz = 1. We
choose parameters on the horizontal and vertical lines through the optimal point (J±±,Jz±) = (0.34Jzz, 0.6Jzz) in the J± = 0.66Jzz plane of
phase diagram.

neighbor bonds to account for the spin-wave dispersion of the
polarized state in the strong magnetic field and the effective-
spin correlation in YbMgGaO4. The bond-dependent interac-
tion is a natural and primary consequence of the strong SOC
in the system. As for further-neighbor interactions, although
they generally exist, they should be rather weak for Yb3+ ions.
That the next-nearest-neighbor interactions in Refs. [5,36] are
quite large is surprising. Thus, it is reasonable to keep only
nearest-neighbor interactions.

We have recently proposed that the spinon Fermi surface
U(1) QSL provides a consistent explanation for the exper-
imental results in YbMgGaO4 [4,8]. We pointed out that
the particle-hole excitation of a simple noninteracting spinon
Fermi sea already gives both the broad continuum and the upper
excitation edge in the inelastic-neutron-scattering spectrum. In
Ref. [9], we variationally optimized the energy against the trial
ground-state wave function that is constructed from a more
generic spinon Fermi surface mean-field state and directly
computed the correlation function of the local moments with
respect to the variational ground state. Finally, we note that
there is a recent proposal that has a different emphasis on the
second-neighbor exchange coupling [36].
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APPENDIX A: SPIN CORRELATIONS WITH MORE
PARAMETER CHOICES

Here we provide results of the spin correlation derived from
the generic model given in the main text for a larger set of
parameters. Such information should facilitate a systematic
comparison between theory and experiment. Again, due to
the limited experimental information (e.g., we do not directly
obtain Jz± from the neutron-scattering results), the results
here merely emphasize the importance of the anisotropic spin
interactions.

The results are shown in Fig. 4. The evolution of the
spin correlations with the varying parameters confirms the
classical phase diagram of the model. For large Jz± or J±±,
the system develops a stripe order, and the spin correlation
has a sharp peak at the wave vector M. For smaller spin-
orbit coupling, a large number of classical degeneracy will
frustrate the system and gives rise to a continuum in the
spin correlation. The nearest-neighbor spin interactions are
sufficient for reproducing the continuum and peak at M, as
evidenced in a recent experimental work [15].
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